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Abstract 

The dynamical theory of X-ray-phonon interactions 
for one-phonon processes is applied to find the ther- 
mal diffuse scattering for incident radiation within 
the angular region of a Bragg peak. In this region 
contributions must be included from phonons that 
do not obey the traditional selection rule of connect- 
ing points on the two-beam dispersion surface. The 
general result is evaluated explicitly for the Ge 220 
symmetric reflection. The thermal diffuse scattering 
distribution in output angle is strongly suppressed in 
the central region, and shows peaks close to the edges 
of this region as well as at the direction of specular 
reflection. The suppression of the interaction, and the 
appearance of the pseudospecular peak, can be traced 
to the large primary extinction for both the incident 
and outgoing beams in this region, in addition to the 
boundary condition that the phonon-excited signal 
be entirely internally generated. Both effects also 
combine to eliminate the traditionally expected diver- 
gence of thermal diffuse scattering at the Bragg peak. 

I. Introduction 

The interaction of X-rays with thermal phonons 
(TDS) in the angular region of nearly total reflection 
of a Bragg peak is of both practical and theoretical 
interest. It is needed for an accurate determination 
of structure factors, as a correction to the experi- 
mentally measured intensities that cannot differenti- 
ate between elastic and inelastic scattering in this 
region (Cochran, 1969). Furthermore, simple scatter- 
ing theory predicts that the cross section for this 
interaction diverges as the scattering vector Q, defined 
by 

Q = K f - K 0 = n + q ,  (I) 

approaches a reciprocal-lattice vector H when the 
phonon wave vector q goes to zero (Willis & Pryor, 
1975). While integrable, this divergence enhances the 
contribution of very-long-wavelength phonons (A = 
27r/q) beyond their actual population density, and 
deserves, for this and for more formal reasons, more 
detailed scrutiny. 
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In contrast to X-rays, the diffraction of T-rays using 
M/fssbauer techniques allows an energy discrimina- 
tion sufficient to separate elastic scattering and inelas- 
tic TDS in the region of the Bragg peak. It has been 
shown (O'Connor & Butt, 1963) that instead of 
diverging, or reaching a plateau, TDS actually shows 
a dip in the central portion of this region. The dip is 
replaced by a shallow maximum as the crystal quality 
in the surface region deteriorates. Both of these 
features are consistent with these authors' explana- 
tion that the strong primary extinction of perfect 
crystals in the Bragg region limits the depth of the 
interaction of X-rays with phonons severely enough 
to overcome any divergent trends. More recently, 
similar results have been obtained using X-rays 
(Kashiwase, Kainuma & Minoura, 1982). A defect 
line normal to the plane of incidence was found in 
the TDS. This line persisted even as the incident 
direction traversed the Bragg angle, and was 
attributed to Bragg scattering of phonons. The same 
phenomenon has now received a more detailed 
geometrical explanation in terms of the similar 
behavior of Kikuchi lines in electron diffraction 
(Wilkins, Chadderton, & Smith, 1983). 

Without categorizing these effects in detail, we have 
been using a dynamical theory of X-ray phonon inter- 
action in perfect crystals (Wasserstein-Robbins & 
Juretschke, 1985) to show that such defect lines 
should indeed exist, and that they have two major 
causes. Firstly, primary extinction plays exactly the 
role of limiting the depth of interaction suggested by 
O'Connor & Butt (1963). Seco:~dly, there is the boun- 
dary condition requiring that the emerging phonon- 
excited signal is entirely generated within the crystal. 
This becomes important in specifying the Bragg- 
diffracted fields when the phonon-excited X-ray 
modes are composed of two coherent fields of com- 
parable magnitude, as is the case within and in the 
immediate vicinity of the region of total reflection. 
While our companion paper (Wasserstein-Robbins & 
Juretschke, 1985), hereafter designated WJ, presents 
a general formulation of TDS for all one-phonon 
transitions, the results explicitly discussed there have 
been limited to the situations where the angle of 
incidence 0in relative to the Bragg angle 0a is large 
compared to the angular width of total reflection, i.e. 
[O~nI>>[FFH[. The present paper extends the explicit 
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results to cover all values of 0i,, and in particular 
those lying within the region of total reflection. Earlier 
treatments of this problem by O'Connor (1967) and 
Afanas'ev, Kagan & Chukovskii (1968) have 
developed the general approach also used here, but, 
as pointed out in WJ, did not include a sufficiently 
complete handling of the boundary condition to per- 
mit quantitative exploration of this central region. 

The dynamical theory of WJ treats X-ray phonon 
scattering by using as a starting point the dynamical 
solutions of X-ray modes in perfect crystals (e.g. 
Batterman & Cole, 1964). Phonons, with lifetimes 
long compared to the passage of X-ray photons 
through the crystal, essentially impose a spatial 
modulation on all structure factors, which set up new 
normal modes of X-ray propagation within the crystal 
(e.g. Krhler, Mrhling & Peibst, 1970). In the approxi- 
mation limited to single-phonon processes, N 
phonons will set up a system of 2 N +  1 modes, with 
each mode containing 2(2N+1)  coherent fields 
(O'Connor, 1967; Afanas'ev et al., 1968; Krhler, 
Mrhling & Peibst, 1974; Wasserstein-Robbins, 1982). 
In consonance with the general spirit of dynamical 
theory (Ewald, 1916), TDS is then obtained by deter- 
mining the excitation of phonon-coupled modes in 
addition to the central elastic, i.e. phonon-free, model 
that results when a single external field is incident on 
the crystal. As already mentioned, this excitation is 
partly controlled by the condition that the net incident 
fields for all but the central field direction must vanish. 
A particular example using this approach, for N = i, 
and leading to a six-beam problem, has been 
examined (Juretschke & Wasserstein-Robbins, 1982) 
for phonons traveling parallel to the surface. It has 
an exact analytic solution for arbitrarily large phonon 
intensities (within the one-phonon process approxi- 
mation) that can serve as a yardstick for examining 
the limits of approximate solutions. 

For thermal phonons, where phonon intensities, 
proportional to k~T, are weak, a solution restricted 
to the first power in knT  provides the most important 
contribution to TDS, and can be obtained by a per- 
turbation expansion. Within this approximation, the 
TDS following from the general theory of WJ shows 
several specific features characteristic of the dynami- 
cal treatment: (a) For given angles 0~, of the incident 
field and 0o~t of the inelastically reflected field the 
relevant phonon wave vector qo is that connecting the 
two tiepoints on the dynamical two-beam dispersion 
surface (real part) that correspond to 0in and 0ou t. 
Therefore, wherever the dynamical and kinematical 
dispersion surfaces differ, such as in the region of 
strong reflection, the dynamically and kinematically 
expected phonons in TDS can differ in both magni- 
tude and direction. (b) The overall TDS intensity is 
inversely proportional to the average absorption 
coefficient, i.e. it depends on the depth of penetration 
controlling the effective volume of X-ray phonon 

interaction. (c) Wherever absorption differs from its 
average, at 0in or 0out, the relative coupling strength 
f varies accordingly. For example, if we fix 0in as 
outside the reflecting region and let 0out increase from 
negative to positive values through this region, f first 
increases as the crystal becomes anomalously trans- 
parent, and then drops sharply as the primary extinc- 
tion becomes large. This drop in f largely accounts 
for the defect lines discussed earlier. Similarly, the 
asymptotic value o f f  as 0out goes far away from zero 
is determined by the absorption at 0i.. 

Strictly speaking, these features, based on the phy- 
sically plausible separation into a relevant qo and an 
effective coupling strength f, describe TDS only ,when 
0in is .outside the region of total reflection. As shown 
in WJ, in that case the sum over all phonons contribut- 
ing to TDS for given 0i, and 0out is dominated by the 
qo described under (a) above, and thus leads formally 
to the commonly accepted selection rule for momen- 
tum conservation in X-ray phonon interaction. 
Actually, when condition (1) is applied to the proper 
dispersion surface of2N + 1 sheets needed to describe 
N phonons, other q's also contribute to TDS. Only 
when 0i= is outside the Bragg-peak region is this 
contribution weighted by a Lorentzian sharply peaked 
at the conventional qo. On the other hand, when 0~, 
and 0ont are small this Lorentzian becomes broad and 
the contribution from the other q's must be evaluated 
more carefully. This aspect of the problem was not 
taken up in WJ. 

The generalized phonon contribution to TDS, and 
its consequences, are addressed below. § 2 presents 
a formal solution to the problem. § 3 applies the 
theory to the 220 reflection in Ge, and § 4 discusses 
some implications of these results for the general 
problem of X-rays interacting with long-wavelength 
phonons in diffracting regions. 

2. Theory 

The basic theoretical formulation of TDS, developed 
and discussed in WJ, will not be repeated here, bat 
will be referred to extensively. To facilitate these 
references, equations from that paper will be cited 
with a prefaced WJ, e.g. (WJ-5). The formulation uses 
a formalism of dynamical theory adapted from that 
of Batterman & Cole (1964). 

Our starting point is equation (WJ-20). As pointed 
out in WJ in connection with that equation, a fixed 
set (0in, 0out) completely determines all the variables 

that establish the tiepoints on all sheets of the 
dispersion surface of the participating modes. Hence, 
when summing (WJ-20) over all participating 
phonons, the only variable is the component qz of all 
the phonon wave vectors having a common value of 
qx. This variable, or its equivalent /t o related to qz 
through (W J-13), appears explicitly in the 
denominator of (WJ-20), and also implicitly in the 
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factor IFmF#nl. By inserting in this factor the 
expression appropriate to thermal phonons, along the 
lines of W J, we can write the generalization of f/qo 
as an average: 

(f/qo) = (~"{[~:~n ( 0 ) -  ~:jo(j)] 2 

+ [ ~ n  (0) - s~j'o(j)]=}/I ¢o.  (0)1 = 

x 7r-' ~ [ q(Ao, AH) ] - '  { [Ao -  ~:jn(j) 
--(30 

+s~o(0)]2+[sc~0(0)-#j~(j)]2} -1 dao. (2) 

Here 6"= kFF'~ measures the average absorption, and 
the ~:'s designate the tiepoints on the dispersion sur- 
face for 0in and 0o~t (see WJ). As expected, when the 
real part of Coo(0)- ~H(j)  is much larger than the 
imaginary part, the second factor in the integral is a 
sharply peaked Lorentzian that can be replaced by a 
delta function. Under that condition, (2) reduces to 
f/qo of WJ. More generally, the integral expression 
in (2) has to be evaluated exactly, including the 
variation of the first factor. 

For an arbitrary phonon in the plane of incidence, 
q(Ao, An) is a function of the two independent vari- 
ables Ao and An, defined in (WJ-13) and correspond- 
ing to qx and q,: 

q2=(sin220s)-~{A~+A~-2AoAnCOS20s}. (3) 

But if the variable q is to connect a fixed 0i, to the 
common 0o~t, An is related to Ao by the condition 

AH=[~o(j)-~H(O)]+[~H(j)-~o(O)-Ao] (4) 

so that q(Ao, An) in (2) is a function of Ao only. 
With the new variable 

x = [ ~jn (j) - ~:~)0(0) - Ao] 

and the new constants 

A = 1~o(0) - ~:j~(J)l 
C 1 ! • = ~{~jo(J) + ~H(j ) - -  [~0(0) + ~:;m(0)]} tan 08 
D 1 , • = ~{~:ju(J) -- ~jo( j ) -  [~:~o(0) - ~:~n(0)]} 

the second factor of (2) can be rewritten as 
co 

(sin 0B/Tr) ~ [(x-D)E+CE]-'/E(xE+AE)-'dx. (5) 
--co 

A convenient form for expressin$ this integral, 
which takes into account that different relative values 
of A, C and D lead to different formulations in terms 
of real functions, is given by 

(sin 0B/¢r)(2/A) Im ( [ ( D - i A )  cosh z ] - '  

x {tanh -~ [(1 +s inh z)/cosh z] 

+ t anh  -1 [(1 - sinh z)/cosh z]}), (6) 

where sinh z = C/(D- iA). 
Of course, in evaluating (6) the proper relative 

phase angles of the multivalued function tanh- '  of 

complex argument must be observed, l~or example, 
in the asymptotic region IA/D[<I, the imaginary 
parts of the arguments of the two tanh- '  approach 
zero, but are of opposite sign. Hence the sum of the 
two tanh- '  approaches 7r/2. Since in that same limit 
D coshz  approaches (C2+D2) 1/2, and since this 
expression is also equal to qosin 08, (6) becomes 
1/(Aqo). Then (2) is identical with the value f/qo of 
WJ, where, because 0in is restricted to be large, we 
are always in this asymptotic limit. More generally, 
the same limit holds for arbitrary Oi, as long as I 0ou,I -> 
loin[. If we now let Oout vary and approach Oin, the 
phase angles deriving from the imaginary parts of the 
tanh -1 change continuously, except at Oin = Oout, 
where the constant C changes sign, and the two tanh -1 
interchange in value. This interchange introduces a 
qualitatively new feature in the behavior of (6) near 
Oin =Oout, not present in the asymptotic form used in 
W J, which will be demonstrated and discussed below. 

3. Results 

Some of the contents of (6) will be explored by 
evaluating it explicitly for the symmetric 220 reflec- 
tion of Ge, under Cu Ka radiation. This allows con- 
tinuity and direct comparison with the results shown 
in WJ, where the asymptotic form of (6), f/qo, was 
given for the same reflection at 0i, = +70". 

For reference, and in order to put our results in 
perspective, we show in Fig. 1, for the Ge 220 reflec- 
tion, the real part of the dispersion surface in k ~ -  kz 
space, and also the imaginary part of k~, I~Czl, that 
measures the primary extinction. The lower part of 
Fig. 1 includes the elastically reflected relative 

.kz(cm-q / 
t "5104 / 

;to y 
I_..-~ "- . . . .  

~ | ~  ~ ~'J I ~ 0 .  5 

-I.0" 10 4 0|.5 | I.o k,(cm-') 

. /  
, I , , . >  o,° 

-15 -10 -5 0 5 10 15 sec 

Fig. 1. General characteristics of the Ge 220 reflection (Cu Ka) .  
Solid curve: real part of the normal branch of the dispersion 
surface (or polarization). Dashed curve: imaginary part of k~, 
I~z I. Insert below: relative elastically reflected intensity vs 0. The 
0 scale matches the k~ scale above it. 
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intensity I/Io, as a function of 0i , (= Oout), with the 
0 scale corresponding to the /~  scale of the dispersion 
curves. I~C=l exhibits the typical maximum in the 
region of nearly total reflection, and the minimum 
just below 0 = - 6 "  where anomalous transmission 
occurs. The real part of the dispersion curve shows 
a strong deviation from the kinematic straight line 
through the origin at the angle cos -1 (22.65°). All the 
values of sr~ and ~:~ entering into (6) are derived from 
this curve by 

~:~ = -k-, cos OB + kz sin 0s, 

~:~ = - ~  cos OB -- kz sin Os 

and the imaginary parts by 

~ ~7{z sin 0B 1 ,, = + ~kFFo, 

sr~ = - ~ z  sin OB +½kFFg. 

Fig. 2 shows the value of (f/qo) derived from (6) 
for O~, = 10", which is still outside the main angular 
region of reflection of Fig. 1. The dashed curve in 
this figure is the result predicted for f/qo according 
to (WJ-23) and (WJ-25). Obviously, this asymptotic 
formula is still very good. Compared to Fig. 5 of WJ 
for 0in = 70", the maximum amplitude is about seven 
times larger, in agreement with a reduction of 0i. by 
the same factor, and therefore reflecting the typical 
1/qo dependence. In both the asymptotic curve and 
the exact result the maximum n e a r  0ou t = 0in , pro- 
nounced in Fig. 5 of WJ, is now reduced relative to 
that near 0out = -0i , .  In addition, there is a new 
feature near 0out = 10" ( = 0ir,), in terms of a new peak 
superimposed on the smooth f/qo curve. This peak, 
in fact, shows a weak divergence, at the exact angle 
of specular reflection, which is probably largely due 
to the use of first-order solutions based on the unper- 
turbed dispersion surface, in WJ and in this paper. 
But apart from this spurious divergence at exactly 

• /,Z 

I 

- I 0  
! 

q/q,> (cm) 

7.10-a 

~= I0" 

I I I 

0 I0 sec 

Fig. 2. Compar ison o f f /qo  of WJ (dashed curve) and (f/qo) of 
(6) vs 0out, for 0in = 10", for the reflection of Fig. 1. (f/qo) exhibits 
a new peak around 0out = 01,. 

0out = 0in, the new peak persists at neighboring values 
of 0o,t where this solution is good. Such a peak around 
the elastic scattering output angle, has already been 
found in an exact solution of another configuration 
of X-ray phonon interactions (Juretschke & Wasser- 
stein-Robbins, 1982), although it has never yet been 
identified experimentally. It is a direct consequence 
of the boundary condition imposed on the net field 
of all phonon excited modes. The deep minimum in 
the region 10outl < 6" in Fig. 2 is the dynamical sup- 
pression of the phonon interaction because of primary 
extinction, in both f/qo and (f/qo). 

Fig. 3 extends the results for (f/qo) to the edge of 
the region of total reflection, with 0i. = +7". The 
behavior already described for Fig. 2 persists, with 
the new peaks around 0out = 0in gaining in promi- 
nence. The combination of this peak and the 
minimum in primary extinction near Oo,t = -7"  gives 
the interaction at negative incident angles increased 
weight. The maxima of (f/qo) are still increasing, but, 
except in the region of the new peak, (f/qo) lies 
between 10 and 40% belowf/qo (not shown), mostly 
so in the region of total reflection. 

Fig. 4 carries the results fully into this region. At 
0i., = +5", the central minimum, now higher than in 
Fig. 3, is surrounded by peaks of similar heights 
remaining at the edges of the reflecting region. For 
0in = 0" the central minimum is replaced by the new 
pseudoelastic peak, but shoulders of the other two 
peaks persist at the same edge locations of 0out as for 
0in = +5". In the central region the magnitude of( f /qo)  
for 0in -- 0" is down by a factor of about five from the 
asymptotic expectation f/qo, indicating that in this 
region the proper evaluation of (6) is essential for 
predicting the correct TDS. 

I 
/ 
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/ 

/ /  

1 I I 

-IO 0 

( f /q~  (cm) 

i0.10 -5 

I \  
i \  
I \ 

I 
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I I ~ut 
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Fig. 3. (f/qo) vs 0out for 0in = +7", just outside the main reflecting 
region of Fig. 1. 
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Most of these features are a quantitative confirma- 
tion of the behavior anticipated by O'Connor (1967), 
although not fully contained in his formulation. Of 
course, higher-order effects due to thermal distortion 
of the dispersion surfaces have not been included 
here. 

4. Discussion 

In order to compare these theoretical results with any 
specific experiment, such as that of O'Connor & Butt 
(1963), we would have to convolute the incident beam 
width with a series of functions of the form shown 
in Figs. 2 to 4. However, even without this, we can 
draw several conclusions about TDS in the Bragg 
region, valid for arbitrary incident beam profiles. 

First of all, TDS is strongly suppressed in the 
angular region of total reflection, regardless of 0i,. 
Hence, wherever elastic and inelastic scattering can 
be separated, we expect a defect line normal to the 
plane of incidence, and centered around 0ou, = 0". 
This is in full accord with the observations of O'Con- 
nor & Butt (1963) and Kashiwase, Kainuma & 
Minoura (1982). We must assume, of course, that in 
these experiments the crystals were perfect enough 
so that dynamical processes operate fully. On the 
other hand, any gross divergence of the incident beam 
would at most produce a superposition of the effects 
discussed here, and those taken up in W J, without 
obscuring the defect line. In any case, our results 
indicate that, in high-resolution experiments on per- 
fect crystals, the TDS contribution to the Bragg 
intensity is considerably more complex than usually 
assumed. 

The physical reasons for the suppression of TDS 
have already been explained, in terms of a combina- 

(~f/q°~ (cm t 5-1 O- s 

~in-- 0 "  
5 

I Oout 
- I0 0 I0 sec 

5.10 .5 

/ k \  * I , ' ,  _ ,, 

2 " - ,  , I , 
- I0 0 I0 see 

Fig. 4. ( f /qo)  vs 0out for 0 in  = +5" and 0 i . = 0  ", on the same scale 
as Figs. 2 and 3. 

tion of a number of effects. When both 0i, and 0out 
are in the Bragg region, these can no longer be sepa- 
rated. However, an interesting new conceptual insight 
emerges from the evaluation of (2) given in § 3: 
Whenever (f/qo) differs from f/qo, it is not sufficient 
to use the traditional selection rule that the q of the 
relevant phonon producing coupling must connect 
two tiepoints on the two-beam dispersion surface. 
Tiepoints involving the s a m e  0in and 0out, but off this 
dispersion surface, are also active, and their q's con- 
tribute to the total TDS. In particular, they also pro- 
duce the pseudospecular peak that gives the TDS a 
nearly symmetric appearance at small input angles, 
such as in Fig. 4. The formal reason for this break- 
down of the traditional selection rule, already dis- 
cussed in WJ, is that actually a 2N + 1 sheeted disper- 
sion surface is needed to describe the totality of 
single-phonon processes. 

Secondly, the results of Figs. 2 to 4 show that the 
traditionally expected divergence of TDS, associated 
with the 1/qo dependence of this interaction, does 
not occur in a fully dynamical theory. Judging from 
these figures, the 1/qo dependence holds only as long 
as both 0i, and 0out lie outside the edges of the region 
of total reflection, here given by +6", as indicated in 
Fig. 1. Inside this region, primary extinction and the 
other effects take over. Of course, because of the 
dispersion surfaces' deviation from straight lines in 
this region, as seen in Fig. 1, qo cannot vanish at 
0 =0", but rather does so at the crossover of the 
dispersion curve and the kx axis, here occurring at 0 
close to -5.72". At exactly that angle, the smallest 
classical phonon connects 0out = 0i, with a propaga- 
tion vector qo=0.635 cm -1 (or A---10cm), so that 
1/qo = 1.6 cm. Yet (f/qo), as calculated from (6), is 
only 0.4 pm, in agreement with the general magni- 
tudes shown in Figs. 3 and 4 for nearby angles. Hence 
here dynamical effects suppress the X-ray-phonon 
interaction by a factor larger than 104. It is also 
important to note that at this same angle the 
asymptotic estimate of W J, using the classical selec- 
tion rule for q0, gives f /qo = 0.73 mm, still more than 
a factor of 1000 larger than the full dynamical result. 
The origin of this large difference is that the very 
broad Lorentzian of (5) in this region gives an integral 
essentially proportional to 1/A 2, or an interaction 
inversely proportional to the square of the absorption 
coefficient in the central region. [In quoting the value 
for (f/qo) above, we have eliminated the spurious 
weak divergence at 0out = 0i,, occurring for all 0i,, 
which, as already discussed above, is most probably 
associated with the perturbation approximation 
underlying the starting expression (2). Since this 
divergence is extremely narrow, it does not appreci- 
ably distort the values of (f/qo) small fractions of a 
second of arc away.] Obviously, at values of qo as 
small as the one considered above, other effects such 
as sample size or low-frequency environmental noise 
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will severely distort the ideal interaction considered 
here. Such a suppression of  the TDS divergence was 
not obtained by Afanas 'ev et aI. (1968), based on a 
somewhat different formulation that still led to a 
log (q) dependence. The differences in formulation 
have already been discussed in WJ. 

Finally, dynamical modifications of  the kind dis- 
cussed here should also manifest themselves in the 
interaction of  X-rays with other types of waves. Apart  
from any specific details of the interaction, the 
expression replacing ( f /qo)  will have to take into 
account that the density of states of  these waves may 
differ from the 1/q dependence for thermal phonons 
underlying the form of  (6). 
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Abstract 

When dealing with X-radiation of  two near 
wavelengths, A~ and A2, from a crystal mono- 
chromator, M, incident on a small single crystal, c, 
interpretation of the interaction betweerf the radiation 
and the specimen crystal is usually based on a single 
reciprocal lattice and two reflecting circles (spheres) 
of radii l/A1 and l/A2 whose centres do not coincide. 
If  one uses the alternative Ewald construction of a 
single reflecting circle (sphere) of unit radius (which 
uniquely defines the specimen crystal location) and 
two reciprocal lattices mutually parallel but 
dimensionally scaled as A I:A2 and with displaced 
origins, then this allows a more ready appreciation 
of the special relationships between the dispersion 
of  the specimen crystal and that of the monochro- 
mator as 0c changes, in particular, when 0c equals 
arctan (0.5 tan OM), arctan (0.6 tan OM) or OM. 

To illustrate the interaction of a small single crystal 
with monochromated radiation corresponding to a 
wavelength band AA = A2-A1, the more usual Ewald 
construction, e.g. Zachariasen (1945), Schoenborn 

(1983), involves (Fig. 1) a single reciprocal lattice 
and a range of  reflecting circles (spheres) of radius 
l/A2 to l/A1 whose centres, c2 to cl, (and hence the 
effective location of the specimen crystal, c) are con- 
tinually displaced as A changes. This construction 

Fig. 1. The interaction of a small single crystal with monochro- 
mated X-radiation corresponding to a wavelength band, AA = 
A2-A1, demonstrated by an Ewald construction based on a 
single reciprocal lattice, origin O, and a range of reflecting circles 
of radius l/A2 to l/A1, with centres c2 to c 1. The point s corre- 
sponds to the 'focusing' condition. 
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